skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tornow, W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The electron antineutrino flux limits are presented for the brightest gamma-ray burst (GRB) of all time, GRB221009A, over a range of 1.8–200 MeV using the Kamioka Liquid Scintillator Antineutrino Detector. Using multiple time windows ranging from minutes to days surrounding the event to search for electron antineutrinos coincident with the GRB, we set an upper limit on the flux under the assumption of several power-law neutrino source spectra, with power-law indices ranging from 1.5 to 3 in steps of 0.5. No excess was observed in any time windows ranging from seconds to days around the event trigger timeT0. For a power-law index of 2 and a time window ofT0 ±  500 s, a flux upper limit of 2.34  ×  109cm−2was calculated. The limits are compared to the results presented by IceCube. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  2. Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter (χ0) accompanied by a negatively charged excited state (χ−) with a small mass difference (e.g. < 20 MeV) can form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy is O(1−10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a benchmark parameter set of WIMP mass mχ0=1 TeV and mass difference Δm=17 MeV, we set the most stringent upper limits on the recombination cross section times velocity 〈σv〉 and the decay-width of χ− to 9.2×10−30cm3/s and 8.7×10−14 GeV, respectively at 90% confidence level. 
    more » « less
  3. Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ N = Z nucleus$$^{24}$$ 24 Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ 24 Mg($$\gamma ,\gamma ^{\prime }$$ γ , γ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ J π = 1 - , four$$J^{\pi }=1^+$$ J π = 1 + , and six$$J^{\pi }=2^+$$ J π = 2 + states in$$^{24}$$ 24 Mg. De-excitation$$\gamma $$ γ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ γ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ B ( M 1 ) = 2.7 ( 3 ) μ N 2 is observed, but this$$N=Z$$ N = Z nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ B ( E 1 ) 0.61 × 10 - 3  e$$^2 \, $$ 2 fm$$^2$$ 2 . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ B ( Π 1 , 1 i π 2 1 + ) / B ( Π 1 , 1 i π 0 gs + ) branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ 24 Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ ρ 2 ( E 0 , 0 2 + 0 gs + ) strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ B ( M 1 , 1 + 0 2 + ) / B ( M 1 , 1 + 0 gs + ) branching ratio of the 10.712 MeV$$1^+$$ 1 + level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ Δ β 2 2 between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ 0 2 + level. 
    more » « less
  4. Natural copper is commonly used as cooling and shielding medium in detector arrangements designed to search for neutrinoless double-β decay. Neutron-induced background reactions on copper could potentially produce signals that are indistinguishable from the signals of interest. The present work focuses on radiative neutron capture experiments on Cu63,65 in the 0.4 to 7.5 MeV neutron energy range. The new data provide evaluations and model calculations with benchmark data needed to extend their applicability in predicting background rates in neutrinoless double-β decay experiments. 
    more » « less
  5. Measurements of the Tm169(n,2n)Tm168 cross section have been performed via the activation technique at 13 energies between 8.5 and 15.0 MeV. The purpose of this comprehensive data set is to provide an alternative diagnostic tool for obtaining subtle information on the neutron energy distribution produced in inertial confinement deuterium-tritium fusion experiments at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. The Tm169(n,2n)Tm168 reaction not only provides the primary 14-MeV neutron fluence, but also the important down-scattered neutron fluence, the latter providing information on the density achieved in the deuterium-tritium plasma during a laser shot. 
    more » « less